Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.861
1.
Scand J Med Sci Sports ; 34(5): e14650, 2024 May.
Article En | MEDLINE | ID: mdl-38712745

Quantitative MRI (qMRI) measures are useful in assessing musculoskeletal tissues, but application to tendon has been limited. The purposes of this study were to optimize, identify sources of variability, and establish reproducibility of qMRI to assess Achilles tendon. Additionally, preliminarily estimates of effect of tendon pathology on qMRI metrics and structure-function relationships between qMRI measures and ankle performance were examined. T1, T1ρ, T2, and T2* maps of the Achilles tendon were obtained using a 3T MRI scanner. In participants with asymptomatic tendons (n = 21), MRI procedures were repeated twice, and region of interest selection was performed by three raters. Variance decomposition and reproducibility statistics were completed. To estimate the effect of pathology, qMRI measures from individuals with asymptomatic tendons were compared to qMRI measures from a pilot group of individuals with Achilles tendinopathy (n = 7). Relationships between qMRI and ankle performance measures were assessed. Between-participant variation accounted for the majority of variability (46.7%-64.0%) in all qMRI measures except T2*. ICCs met or exceeded 0.7 for all qMRI measures when averaged across raters or scans. Relaxation times were significantly longer in tendinopathic tendons (mean (SD) T1: 977.8 (208.6) ms, T1ρ: 35.4 (7.1) ms, T2: 42.8 (7.9) ms, T2*: 14.1 (7.6) ms, n = 7) compared to asymptomatic control tendons (T1: 691.7 (32.4) ms, T1ρ: 24.0 (3.6) ms, T2: 24.4 (7.5) ms, T2*: 9.5 (3.4) ms, n = 21) (p < 0.011 for all comparisons). T1 related to functional performance measures in symptomatic and asymptomatic groups. Study findings suggest that qMRI is reliable to assess the Achilles tendon. qMRI quantitatively assesses the presence of tendon pathology and relates to functional performance outcomes, supporting the utility of incorporating qMRI in research and clinic.


Achilles Tendon , Magnetic Resonance Imaging , Tendinopathy , Humans , Achilles Tendon/diagnostic imaging , Magnetic Resonance Imaging/methods , Tendinopathy/diagnostic imaging , Male , Female , Adult , Reproducibility of Results , Young Adult , Middle Aged , Ankle Joint/diagnostic imaging
2.
J Orthop Surg Res ; 19(1): 273, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698477

BACKGROUND: Talar malignant tumor is extremely rare. Currently, there are several alternative management options for talus malignant tumor including below-knee amputation, tibio-calcaneal arthrodesis, and homogenous bone transplant while their shortcomings limited the clinical application. Three-dimensional (3D) printed total talus prosthesis in talus lesion was reported as a useful method to reconstruct talus, however, most researches are case reports and its clinical effect remains unclear. Therefore, the current study was to explore the application of 3D printed custom-made modular prosthesis in talus malignant tumor. METHODS: We retrospectively analyzed the patients who received the 3D printed custom-made modular prosthesis treatment due to talus malignant tumor in our hospital from February 2016 to December 2021. The patient's clinical data such as oncology outcome, operation time, and volume of blood loss were recorded. The limb function was evaluated with the Musculoskeletal Tumor Society 93 (MSTS-93) score, The American Orthopedic Foot and Ankle Society (AOFAS) score; the ankle joint ranges of motion as well as the leg length discrepancy were evaluated. Plain radiography and Tomosynthesis-Shimadzu Metal Artefact Reduction Technology (T-SMART) were used to evaluate the position of prosthesis and the osseointegration. Postoperative complications were recorded. RESULTS: The average patients' age and the follow-up period were respectively 31.5 ± 13.1 years; and 54.8 months (range 26-72). The medium operation time was 2.4 ± 0.5 h; the intraoperative blood loss was 131.7 ± 121.4 ml. The mean MSTS-93 and AOFAS score was 26.8 and 88.5 respectively. The average plantar flexion, dorsiflexion, varus, and valgus were 32.5, 9.2, 10.8, and 5.8 degree respectively. One patient had delayed postoperative wound healing. There was no leg length discrepancy observed in any patient and good osseointegration was observed on the interface between the bone and talus prosthesis in all subjects. CONCLUSION: The modular structure of the prosthesis developed in this study seems to be convenient for prosthesis implantation and screws distribution. And the combination of solid and porous structure improves the initial stability and promotes bone integration. Therefore, 3D printed custom-made modular talus prosthesis could be an alternative option for talus reconstruction in talus malignant tumor patients.


Bone Neoplasms , Printing, Three-Dimensional , Prosthesis Design , Talus , Humans , Talus/surgery , Talus/diagnostic imaging , Male , Adult , Female , Bone Neoplasms/surgery , Bone Neoplasms/diagnostic imaging , Retrospective Studies , Middle Aged , Young Adult , Prosthesis Implantation/methods , Prosthesis Implantation/instrumentation , Adolescent , Ankle Joint/surgery , Ankle Joint/diagnostic imaging , Osseointegration , Treatment Outcome , Range of Motion, Articular , Prostheses and Implants
3.
PLoS One ; 19(5): e0302867, 2024.
Article En | MEDLINE | ID: mdl-38743754

Despite evidence on trunk flexion's impact on locomotion mechanics, its role in modulating lower-limb energetics during perturbed running remains underexplored. Therefore, we investigated posture-induced power redistribution in the lower-limb joints (hip, knee, and ankle), along with the relative contribution from each joint to total lower-limb average positive and negative mechanical powers (i.e., over time) during perturbed running. Twelve runners (50% female) ran at self-selected (~15°) and three more sagittal trunk inclinations (backward, ~0°; low forward, ~20°; high forward, ~25°) on a custom-built runway, incorporating both a level surface and a 10 cm visible drop-step positioned midway, while simultaneously recording three-dimensional kinematics and kinetics. We used inverse dynamics analysis to determine moments and powers in lower-limb joints. Increasing the trunk forward inclination yielded the following changes in lower-limb mechanics: a) an elevation in total positive power with a distoproximal shift and a reduction in total negative power; b) systematic increases in hip positive power, coupled with decreased and increased contribution to total negative (during level-step) and positive (during drop-step) powers, respectively; c) reductions in both negative and positive knee powers, along with a decrease in its contribution to total positive power. Regardless of the trunk posture, accommodating drop-steps while running demands elevated total limb negative and positive powers with the ankle as a primary source of energy absorption and generation. Leaning the trunk more forward induces a distoproximal shift in positive power, whereas leaning backward exerts an opposing influence on negative power within the lower-limb joints.


Ankle Joint , Knee Joint , Lower Extremity , Posture , Running , Humans , Running/physiology , Female , Male , Posture/physiology , Biomechanical Phenomena , Adult , Ankle Joint/physiology , Knee Joint/physiology , Lower Extremity/physiology , Hip Joint/physiology , Young Adult
5.
Sci Rep ; 14(1): 10282, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704481

During fatigued conditions, badminton players may experience adverse effects on their ankle joints during smash landings. In addition, the risk of ankle injury may vary with different landing strategies. This study aimed to investigate the influence of sport-specific fatigue factors and two backhand smash actions on ankle biomechanical indices. Thirteen female badminton players (age: 21.2 ± 1.9 years; height: 167.1 ± 4.1 cm; weight: 57.3 ± 5.1 kg; BMI: 20.54 ± 1.57 kg/m2) participated in this study. An 8-camera Vicon motion capture system and three Kistler force platforms were used to collect kinematic and kinetic data before and after fatigue for backhand rear-court jump smash (BRJS) and backhand lateral jump smash (BLJS). A 2 × 2 repeated measures analysis of variance was employed to analyze the effects of these smash landing actions and fatigue factors on ankle biomechanical parameters. Fatigue significantly affected the ankle-joint plantarflexion and inversion angles at the initial contact (IC) phase (p < 0.05), with both angles increasing substantially post-fatigue. From a kinetic perspective, fatigue considerably influenced the peak plantarflexion and peak inversion moments at the ankle joint, which resulted in a decrease the former and an increase in the latter after fatigue. The two smash landing actions demonstrated different landing strategies, and significant main effects were observed on the ankle plantarflexion angle, inversion angle, peak dorsiflexion/plantarflexion moment, peak inversion/eversion moment, and peak internal rotation moment (p < 0.05). The BLJS landing had a much greater landing inversion angle, peak inversion moment, and peak internal rotation moment compared with BRJS landing. The interaction effects of fatigue and smash actions significantly affected the muscle force of the peroneus longus (PL), with a more pronounced decrease in the force of the PL muscle post-fatigue in the BLJS action(post-hoc < 0.05). This study demonstrated that fatigue and smash actions, specifically BRJS and BLJS, significantly affect ankle biomechanical parameters. After fatigue, both actions showed a notable increase in IC plantarflexion and inversion angles and peak inversion moments, which may elevate the risk of lateral ankle sprains. Compared with BRJS, BLJS poses a higher risk of lateral ankle sprains after fatigue.


Ankle Joint , Racquet Sports , Humans , Female , Racquet Sports/physiology , Biomechanical Phenomena , Ankle Joint/physiology , Young Adult , Fatigue/physiopathology , Adult , Muscle Fatigue/physiology , Ankle Injuries/physiopathology , Ankle Injuries/etiology , Ankle/physiology , Range of Motion, Articular/physiology , Athletes
6.
Article En | MEDLINE | ID: mdl-38704857

Graft materials available to supplement hindfoot and ankle arthrodesis procedures include autologous (autograft) or allogeneic bone graft (allograft) but also bone graft substitutes such as demineralized bone matrix, calcium sulfate, calcium phosphate, and tricalcium phosphate/hydroxyapatite. In addition, biologic agents, such as recombinant human bone morphogenetic protein-2 or recombinant human platelet derived growth factor-BB (rhPDGF-BB), and preparations, including platelet-rich plasma or concentrated bone marrow aspirate, have been used to facilitate bone healing in ankle or hindfoot arthrodesis. The purpose of this review was to summarize the available clinical evidence surrounding the utilization and efficacy of the above materials and biological agents in ankle or hindfoot arthrodesis procedures, with emphasis on the quality of the existing evidence to facilitate clinical decision making.


Arthrodesis , Bone Transplantation , Humans , Arthrodesis/methods , Bone Transplantation/methods , Bone Substitutes/therapeutic use , Ankle Joint/surgery , Calcium Phosphates/therapeutic use
7.
Acta Orthop ; 95: 200-205, 2024 May 06.
Article En | MEDLINE | ID: mdl-38708569

BACKGROUND AND PURPOSE: Reduced range of motion (ROM) and spasticity are common secondary findings in cerebral palsy (CP) affecting gait, positioning, and everyday functioning. These impairments can change over time and lead to various needs for intervention. The aim of this study was to analyze the development path of the changes in hamstring length, knee extension, ankle dorsiflexion, and spasticity in hamstrings and gastrosoleus from childhood into adulthood in individuals with CP at the Gross Motor Function Classification System (GMFCS) levels I-V. METHODS: A longitudinal cohort study was undertaken of 61,800 measurements in 3,223 individuals with CP, born 1990-2017 and followed for an average of 8.7 years (range 0-26). The age at examination varied between 0 and 30 years. The GMFCS levels I-V, goniometric measurements, and the modified Ashworth scale (MAS) were used for repeated assessments of motor function, ROM, and spasticity. RESULTS: Throughout the follow-up period, knee extension and hamstring length exhibited a consistent decline across all individuals, with more pronounced decreases evident in those classified at GMFCS levels III-V. Ankle dorsiflexion demonstrated a gradual reduction from 15° to 5° (GMFCS I-IV) or 10° (GMFCS V). Spasticity levels in the hamstrings and gastrosoleus peaked between ages 5 and 7, showing a propensity to increase with higher GMFCS levels. CONCLUSION: Passive ROM continues to decrease to 30 years of age, most pronouncedly for knee extension. Conversely, spasticity reached its peak at a younger age, with a more notable occurrence observed in the gastrosoleus compared with the hamstrings. Less than 50% of individuals had spasticity corresponding to MAS 2-4 at any age.


Ankle Joint , Cerebral Palsy , Knee Joint , Muscle Spasticity , Range of Motion, Articular , Humans , Cerebral Palsy/physiopathology , Cerebral Palsy/complications , Muscle Spasticity/physiopathology , Muscle Spasticity/etiology , Longitudinal Studies , Range of Motion, Articular/physiology , Child , Adolescent , Male , Female , Adult , Young Adult , Knee Joint/physiopathology , Child, Preschool , Ankle Joint/physiopathology , Infant , Hamstring Muscles/physiopathology , Cohort Studies
8.
Bull Hosp Jt Dis (2013) ; 82(2): 159-163, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739665

Ankle arthritis is becoming more common and can be pain-ful and debilitating. As the disease progresses, degenera-tive cystic changes may be found in the distal fibula, distal tibia, and talus. After failure of non-operative modalities, arthrodesis is often considered the surgical intervention of choice, but this leaves the patient with reduced range of motion, altered gait, and can negatively impact adjacent joints of the foot. Total ankle arthroplasty has been found to be an effective surgical option for ankle arthritis but is contraindicated in patients with talar collapse. When this is the case, a more personalized approach for preserving ankle motion is necessary. We present the case of a 65-year-old male with severe right ankle arthritis and talar collapse treated with a custom three-dimensionally printed talus and concurrent total ankle replacement with 2-year follow-up.


Ankle Joint , Arthroplasty, Replacement, Ankle , Joint Prosthesis , Osteoarthritis , Printing, Three-Dimensional , Prosthesis Design , Talus , Humans , Male , Arthroplasty, Replacement, Ankle/methods , Arthroplasty, Replacement, Ankle/instrumentation , Aged , Osteoarthritis/surgery , Osteoarthritis/physiopathology , Osteoarthritis/diagnostic imaging , Talus/surgery , Talus/diagnostic imaging , Talus/physiopathology , Ankle Joint/surgery , Ankle Joint/diagnostic imaging , Ankle Joint/physiopathology , Treatment Outcome , Range of Motion, Articular
9.
Sensors (Basel) ; 24(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38733012

The purpose of this article is to establish a prediction model of joint movements and realize the prediction of joint movemenst, and the research results are of reference value for the development of the rehabilitation equipment. This will be carried out by analyzing the impact of surface electromyography (sEMG) on ankle movements and using the Hill model as a framework for calculating ankle joint torque. The table and scheme used in the experiments were based on physiological parameters obtained through the model. Data analysis was performed on ankle joint angle signal, movement signal, and sEMG data from nine subjects during dorsiflexion/flexion, varus, and internal/external rotation. The Hill model was employed to determine 16 physiological parameters which were optimized using a genetic algorithm. Three experiments were carried out to identify the optimal model to calculate torque and root mean square error. The optimized model precisely calculated torque and had a root mean square error of under 1.4 in comparison to the measured torque. Ankle movement models predict torque patterns with accuracy, thereby providing a solid theoretical basis for ankle rehabilitation control. The optimized model provides a theoretical foundation for precise ankle torque forecasts, thereby improving the efficacy of rehabilitation robots for the ankle.


Algorithms , Ankle Joint , Electromyography , Torque , Humans , Ankle Joint/physiology , Electromyography/methods , Male , Range of Motion, Articular/physiology , Adult , Movement/physiology , Biomechanical Phenomena/physiology , Young Adult
10.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 438-443, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38632063

Objective: To investigate the effectiveness of a new hook-shaped anatomical locking plate in the treatment of Danis-Weber type A lateral malleolus fractures. Methods: A retrospective analysis was performed on the clinical data of 45 patients with Danis-Weber type A lateral malleolus fractures who met the selection criteria between November 2020 and November 2022. According to the surgical methods, they were divided into the observation group (treated with the new hook-shaped anatomical locking plate, 23 cases) and the control group (treated with the conventional lateral malleolus anatomical locking plate, 22 cases). There was no significant difference in baseline data such as gender, age, cause of injury, Danis-Weber type of fracture, time from injury to operation, and combined ligament injury between the two groups ( P>0.05). The operation time, partial weight-bearing time, return to work time, and postoperative complications were recorded and compared between the two groups. The function and pain of ankle joint were evaluated by the range of motion of ankle dorsiflexion, plantarflexion, varus, valgus, and visual analogue scale (VAS) score at 1 and 3 months after operation, and at last follow-up, and the American Orthopaedic Foot and Ankle Society (AOFAS) score at 3 months after operation and at last follow-up. Results: All patients were followed up 10-18 months (mean, 15.1 months). There was no significant difference in operation time between the two groups ( P>0.05); the postoperative partial weight-bearing time and return to work time of the observation group were significantly earlier than those of the control group ( P<0.05). During the follow-up, there was 1 case of joint stiffness in the observation group, and 1 case of joint surface displacement, 1 case of joint stiffness, and 1 case of traumatic arthritis in the control group. There was no significant difference in the incidences of complications between the two groups ( P>0.05). With the extension of time after operation, the range of motion of ankle dorsiflexion, plantarflexion, varus, valgus, and VAS score of the two groups gradually improved, and there were significant differences between different time points ( P<0.05); At 1 and 3 months after operation, the above indexes in the observation group were significantly better than those in the control group ( P<0.05), and there was no significant difference between the two groups at last follow-up ( P>0.05). The difference of AOFAS score between the last follow-up and 3 months after operation in the observation group was significantly better than that in the control group ( P<0.05). Conclusion: Compared with the conventional lateral malleolus anatomical locking plate, the new hook-shaped anatomical locking plate has a more reliable fixation effect in the treatment of Danis-Weber type A lateral malleolus fracture, which is conducive to early functional exercise of the ankle joint, so that patients can bear weight earlier and return to work earlier, and the operation time is not significantly prolonged, and the effectiveness is satisfactory.


Ankle Fractures , Humans , Ankle Fractures/surgery , Ankle Joint/surgery , Fracture Fixation, Internal/methods , Retrospective Studies , Treatment Outcome
11.
Foot Ankle Clin ; 29(2): 333-342, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679443

Malalignment of the lower limb, distal tibia, foot, and hindfoot can all contribute to altered biomechanics in the ankle joint, resulting in increased focal pressure. The development of some osteochondral lesions of the ankle joint may share a similar pathophysiology, where eccentric loading to the talus or tibia within the ankle joint can lead to cartilage injury or adaptive changes. While the association between malalignment and the development of osteochondral lesions of the ankle joint may seem intuitive, the impact of realignment procedures on these lesions and patient symptoms remains a relatively underexplored topic in the literature. A comprehensive understanding of the potential role of realignment surgery in managing osteochondral lesions of the talus and tibia is crucial for advancing our knowledge of this challenging pathologic condition.


Talus , Tibia , Humans , Talus/surgery , Talus/injuries , Tibia/surgery , Ankle Joint/surgery , Bone Malalignment/surgery , Bone Malalignment/etiology
12.
Medicine (Baltimore) ; 103(15): e37745, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608103

It is essential to understand the considerable variations in bifurcation patterns of the tibial nerve (TN) and its peripheral nerves at the level of the tarsal tunnel to prevent iatrogenic nerve injury during surgical nerve release or nerve block. A total of 16 ankles of 8 human cadavers were dissected to investigate the branching patterns of the TN, using 2 imaginary lines passing through the tip of the medial malleolus (MM) as reference lines. Bifurcation patterns and detailed information on the relative locations of the medial plantar, lateral plantar, medial calcaneal, and inferior calcaneal nerves to the reference lines were recorded. The most common bifurcation pattern was Type 1 in 12 ankles (75%), followed by Type 2 in 2 ankles (13%). One medial calcaneal nerve (MCN) was seen in 11 (69%) specimens and 2 MCN branches were seen in 5 (31%) specimen. 88% of the MCN branches bifurcated from the TN, whereas 6% originated from both TN and lateral plantar nerve (LPN). At the level of the tip of the MM, 2 of 7 parameters showed statistically significant difference between both sexes (P < .05). There was a statistically significant difference between left and right ankles in 2 of 7 measurements (P < .05). Further morphometric analysis of the width, distance, and angle between the TN branches and the tip of MM showed a highly variable nature of the location of the peripheral nerve branches.


Ankle Joint , Ankle , Female , Male , Humans , Tibial Nerve , Tibia , Leg
13.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38610231

The purpose of this study was to investigate the relationship between clinical outcomes and lateral thrust before and after unicompartmental knee arthroplasty (UKA) using inertial measurement sensor units. Eleven knees were evaluated with gait analysis. The varus angular velocity was used to evaluate lateral thrust. The femorotibial angle (FTA) and hip-knee-ankle angle (HKA) were used to evaluate lower-limb alignment, and the Oxford Knee Score (OKS) and Japanese Orthopaedic Association Score (JOA) were used to evaluate clinical outcomes. The mean pre-UKA peak varus velocity was 37.1 ± 9.8°/s, and that for post-UKA was 28.8 ± 9.1°/s (p = 0.00003), such that instabilities clearly improved. Assuming the definition of lateral thrust is when the varus angular velocity is more than 28.1°/s, 81.8% of patients had lateral thrust preoperatively, but this decreased to 55.6% postoperatively, such that the symptoms and objective findings improved. Both OKS and JOA improved after surgery. In addition, HKA was -7.9° preoperatively and -5.8° postoperatively (p = 0.024), and FTA was 181.4° preoperatively and 178.4° postoperatively (p = 0.012). There was a positive correlation between postoperative JOA and FTA, indicating that changes in postoperative alignment affected clinical outcomes. This study quantitatively evaluated the disappearance of lateral thrust by UKA, and it found that the stability can be achieved by UKA for unstable knees with lateral thrust.


Arthroplasty, Replacement, Knee , Osteoarthritis , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery , Lower Extremity , Ankle Joint
14.
Sci Rep ; 14(1): 9125, 2024 04 21.
Article En | MEDLINE | ID: mdl-38643231

This study investigates the relationship between ankle and toe strength and functional stability in young adults, with a sample comprising sixteen females and fourteen males. The research employed force platform data to determine the center of foot pressure (COP) and calculated the forward functional stability index (FFSI) through foot anthropometric measurements. Strength measurements of toe and ankle muscles, during maximal isometric flexion and extension, were conducted using force transducers. Notable positive correlations were found between toe flexor strength and FFSI (left flexor: r = 0.4, right flexor: r = 0.38, p < 0.05), not influenced by foot anthropometry. Contrarily, no significant correlation was observed between ankle muscle strength and FFSI, despite a positive correlation with the COP range. The moderate correlation coefficients suggest that while toe flexor strength is a contributing factor to functional stability, it does not solely determine functional stability. These findings highlight the critical role of muscle strength in maintaining functional stability, particularly during forward movements and emphasize the utility of FFSI alongside traditional COP measures in balance assessment. It is recommended to employ a multifaceted approach is required in balance training programs.


Ankle , Toes , Male , Female , Young Adult , Humans , Toes/physiology , Foot/physiology , Ankle Joint/physiology , Muscle, Skeletal/physiology , Muscle Strength/physiology
15.
Gait Posture ; 110: 122-128, 2024 May.
Article En | MEDLINE | ID: mdl-38569401

BACKGROUND: Landing from heights is a common movement for active-duty military personnel during training. And the additional load they carry while performing these tasks can affect the kinetics and ankle kinematic of the landing. Traditional motion capture techniques are limited in accurately capturing the in vivo kinematics of the talus. This study aims to investigate the effect of additional trunk load on the kinematics of the talocrural and subtalar joints during landing, using a dual fluoroscopic imaging system (DFIS). METHODS: Fourteen healthy male participants were recruited. Magnetic resonance imaging was performed on the right ankle of each participant to create three-dimensional (3D) models of the talus, tibia, and calcaneus. High-speed DFIS was used to capture the images of participants performing single-leg landing jumps from a height of 40 cm. A weighted vest was used to apply additional load, with a weight of 16 kg. Fluoroscopic images were acquired with or without additional loading condition. Kinematic data were obtained by importing the DFIS data and the 3D models in virtual environment software for 2D-3D registration. The kinematics and kinetics were compared between with or without additional loading conditions. RESULTS: During added trunk loading condition, the medial-lateral translation range of motion (ROM) at the talocrural joint significantly increased (p < 0.05). The subtalar joint showed more extension at 44-56 ms (p < 0.05) after contact. The subtalar joint was more eversion at 40-48 ms (p < 0.05) after contact under the added trunk load condition. The peak vertical ground reaction force (vGRF) significantly increased (p < 0.05). CONCLUSIONS: With the added trunk load, there is a significant increase in peak vGRF during landing. The medial-lateral translation ROM of the talocrural joint increases. And the kinematics of the subtalar joint are affected. The observed biomechanical changes may be associated with the high incidence of stress fractures in training with added load.


Subtalar Joint , Weight-Bearing , Humans , Male , Biomechanical Phenomena , Subtalar Joint/physiology , Subtalar Joint/diagnostic imaging , Weight-Bearing/physiology , Young Adult , Fluoroscopy , Adult , Magnetic Resonance Imaging , Talus/physiology , Talus/diagnostic imaging , Imaging, Three-Dimensional , Torso/physiology , Range of Motion, Articular/physiology , Ankle Joint/physiology
16.
Eur J Med Res ; 29(1): 235, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622742

BACKGROUND: Ankle-foot orthoses (AFO) can improve gait posture and walking ability in post-stroke patients. However, the effect of AFO on gait parameters in post-stroke patients according to the Brunnstrom stage of stroke recovery of the lower limbs remains unclear. The study aimed to investigate whether stroke patients with different Brunnstrom stages benefit from wearing AFO. METHODS: Twenty-five post-stroke participants included 18 men (50 ± 13 years) and 7 women (60 ± 15 years). The patients were divided based on Brunnstrom stage III or IV of the lower limbs. All patients underwent the gait and timed up and go (TUG) test using a gait analysis system while walking barefoot or with an AFO. The spatiotemporal and asymmetric parameters were analyzed. RESULTS: All 25 patients completed the study. Significant differences were observed between barefoot and AFO use in TUG time (P < 0.001) but not walking velocity (P > 0.05). The main effect of the swing time ratio was significant in both groups (P < 0.05); however, the main effects of stride length, stance time, and gait asymmetry ratio were nonsignificant (P > 0.05). For barefoot versus AFO, the main effects of stride length (P < 0.05) and swing time (P < 0.01) ratios were significant, whereas those of stance time and gait asymmetry ratio were nonsignificant (P > 0.05). CONCLUSIONS: Post-stroke patients with lower Brunnstrom stages benefitted more from AFO, particularly in gait asymmetry.


Foot Orthoses , Gait Disorders, Neurologic , Stroke Rehabilitation , Stroke , Male , Humans , Female , Ankle , Cross-Over Studies , Biomechanical Phenomena , Stroke/complications , Stroke/therapy , Gait , Ankle Joint
17.
J Biomech Eng ; 146(9)2024 Sep 01.
Article En | MEDLINE | ID: mdl-38581371

Understanding the natural biomechanics of walking at different speeds and activities is crucial to develop effective assistive devices for persons with lower-limb impairments. While continuous measures such as joint angle and moment are well-suited for biomimetic control of robotic systems, whole-stride summary metrics are useful for describing changes across behaviors and for designing and controlling passive and semi-active devices. Dynamic mean ankle moment arm (DMAMA) is a whole-stride measure representing the moment arm of the ground reaction impulse about the ankle joint-effectively, how "forefoot-dominated" or "hindfoot-dominated" a movement is. DMAMA was developed as a target and performance metric for semi-active devices that adjust once per stride. However, for implementation in this application, DMAMA must be characterized across various activities in unimpaired individuals. In our study, unimpaired participants walked at "slow," "normal," and "fast" self-selected speeds on level ground and at a normal self-selected speed while ascending and descending stairs and a 5-degree incline ramp. DMAMA measured from these activities displayed a borderline-significant negative sensitivity to walking speed, a significant positive sensitivity to ground incline, and a significant decrease when ascending stairs compared to descending. The data suggested a nonlinear relationship between DMAMA and walking speed; half of the participants had the highest average DMAMA at their "normal" speed. Our findings suggest that DMAMA varies substantially across activities, and thus, matching DMAMA could be a valuable metric to consider when designing biomimetic assistive lower-limb devices.


Walking , Humans , Walking/physiology , Male , Biomechanical Phenomena , Female , Adult , Mechanical Phenomena , Ankle Joint/physiology , Young Adult , Ankle/physiology , Arm/physiology
18.
Med Eng Phys ; 126: 104151, 2024 04.
Article En | MEDLINE | ID: mdl-38621840

This study aimed to characterize ankle and hindfoot kinematics of healthy men and women during overground running using biplane radiography, and to compare these data to those previously obtained in the same cohort during overground walking. Participants ran across an elevated platform at a self-selected pace while synchronized biplane radiographs of their ankle and hindfoot were acquired. Motion of the tibia, talus, and calcaneus was tracked using a validated volumetric model-based tracking process. Tibiotalar and subtalar 6DOF kinematics were obtained. Absolute side-to-side differences in ROM and kinematics waveforms were calculated. Side-to-side and sex-specific differences were evaluated at 10 % increments of stance phase with mixed model analysis. Pearson correlation coefficients were used to assess the relationship between stance-phase running and walking kinematics. 20 participants comprised the study cohort (10 men, mean age 30.8 ± 6.3 years, mean BMI 24.1 ± 3.1). Average absolute side-to-side differences in running kinematics waveforms were 5.6°/2.0 mm or less at the tibiotalar joint and 5.2°/3.2 mm or less at the subtalar joint. No differences in running kinematics waveforms between sides or between men and women were detected. Correlations were stronger at the tibiotalar joint (42/66 [64 %] of correlations were p < 0.05), than at the tibiotalar joint (38/66 [58 %] of correlations were p < 0.05). These results provide a normative reference for evaluating native ankle and hindfoot kinematics which may be informative in surgical or rehabilitation contexts. Sex-specific differences in ankle kinematics during overground running are likely not clinically or etiologically significant. Associations seen between walking and running kinematics suggest one could be used to predict the other.


Ankle , Running , Male , Adult , Humans , Female , Young Adult , Ankle/diagnostic imaging , Foot/diagnostic imaging , Ankle Joint/diagnostic imaging , Walking , Radiography , Biomechanical Phenomena , Range of Motion, Articular
20.
Clin Biomech (Bristol, Avon) ; 114: 106236, 2024 Apr.
Article En | MEDLINE | ID: mdl-38564981

BACKGROUND: Obesity impacts a child's ability to walk with resulting biomechanical adaptations; however, existing research has not comprehensively compared differences across the gait cycle. We examined differences in lower extremity biomechanics across the gait cycle between children with and without obesity at three walking speeds. METHODS: Full gait cycles of age-matched children with obesity (N = 10; BMI: 25.7 ± 4.2 kg/m2) and without obesity (N = 10; BMI: 17.0 ± 1.9 kg/m2) were analyzed at slow, normal, and fast walking speeds. Main and interaction effects of group and speed across hip, knee, and ankle joint angles and moments in sagittal, frontal, and transverse planes were analyzed using one-dimensional statistical parametric mapping. FINDINGS: Compared to children without obesity, children with obesity had greater hip adduction during mid-stance, while also producing greater hip extensor moments during early stance phase, abductor moments throughout most of stance, and hip external rotator moments during late stance. Children with obesity recorded greater knee flexor, knee extensor and knee internal rotator moments during early stance, and knee external rotator moments in late stance than children without obesity; children with obesity also demonstrated greater ankle plantarflexor moments throughout mid and late stance. Interaction effects existed within joint kinetics data; children with obesity produced greater hip extensor moments at initial contact and toe-off when walking at fast compared to normal walking speed. INTERPRETATION: While few kinematic differences existed between the two groups, children with obesity exhibited greater moments at the hip, knee, and ankle during critical periods of controlling and stabilizing mass.


Pediatric Obesity , Walking Speed , Child , Humans , Gait , Walking , Knee Joint , Ankle Joint , Biomechanical Phenomena
...